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SUMMARY 
 

Co-located seismic and magnetotelluric (MT) profiles provide fundamental geophysical data sets to image the crust of Australia. 

Despite their overlapping nature, the data are processed and interpreted separately based on legacy workflows. We qualitatively 

compare 2D resistivity inversion models derived from MT and uninterpreted seismic reflection profiles across Proterozoic Australia to 

address the long-standing cross-cutting nature of interpreted seismic faults and low resistivity zones derived from MT. We find that a 

good correlation exists between high/low reflectivity in seismic sections and low resistivity in MT sections. These relationships 

elucidate signatures of past magmatic and fluid-related events and constrain zones of weakened rheology in the crust. Depending on 

their characteristics, these signatures may signify fossil melting of the crust due to underplating or magmatic invasion into the crust or 

reworking associated with redistribution of fluids along newly developed faults. These findings have implications for constraining 

mineral deposit genesis and location. 
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INTRODUCTION 
 

Imaging the continental lithosphere is pivotal for our understanding 

of the state and properties of the lithosphere and the processes that 

have shaped the continents. Programs focussing on the crustal 

component of the lithosphere most often use seismic reflection 

profiles to interrogate the crust (Goleby et al., 1989; Cook et al., 

2010). In Australia, deep seismic reflection surveys have been used 

to provide two-dimensional profiles of the whole crust, informing 

crustal architecture studies and mineral system settings since 1978 

(e.g., Goleby et al. (1989); Drummond et al. (2006); Kennett and 

Saygin (2015); Kennett et al. (2016)). Surveys continue to be 

undertaken as part of a collaborative agreement between 

Geoscience Australia and state and territory organisations in order 

to address fundamental geodynamic questions, particularly in 

deeply covered terrain and cratonic margin areas. Increasingly, 

national and international programs incorporate other geophysical 

data sets, such as magnetotelluric and potential field data to 

augment the reflection seismic information. Joint studies performed 

during the Lithoprobe experiment highlight the complementary 

nature of magnetotellurics and reflection seismic techniques (Jones, 

1998). Several examples of the Lithoprobe program highlighted the 

coincident nature of low electrical resistivity and high seismic reflectivity in the middle to lower crustal assemblages (Marquis et al., 

1995; Cook and Jones, 1995; White et al., 1999). A similar coincidence is postulated from geodynamic considerations of fluid flow in 

compressive tectonic regimes leading to accumulation of fluids below the brittle-ductile transition (Connolly and Podladchikov, 2004; 

Thiel et al., 2016b).  

However, increasing examples of co-located magnetotelluric and seismic reflection profiles in Australia show that particularly in the 

mid to lower crust sub-vertical zones of low resistivity cross-cut interpreted faults derived from seismic data. Here, we qualitatively 

compare 2D resistivity inversion models derived from MT and un-interpreted seismic reflection profiles the Gawler Craton, South 

Australia (Figure 1) to address the cross-cutting nature of faults interpreted from seismic sections and low resistivity zones derived 

from MT. 

 

 

METHOD 

 
While seismic reflection methods image the acoustic impedance as a product of seismic wave speed and density, the magnetotelluric 

method is sensitive to the electrical resistivity of the subsurface. It is therefore particularly sensitive to fluids (Nover, 2005) in active 

Figure 1: Location of deep seismic reflection profiles 

across Australia (inset) and co-located deep seismic 

reflection and magnetotelluric profiles in South Australia. 

Examples in text are highlighted in red. 
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tectonic settings (Worzewski et al., 2011; Wannamaker et al., 2009; Thiel et al., 2016a), as well as their partial melt sources (Heise et 

al., 2008; Naif et al., 2013; Didana et al., 2014; Aivazpourporgou et al., 2015). However, lower resistivity anomalies are also found 

within stable continental interiors and are attributed to graphite (Pous et al., 2004; Thiel et al., 2005; Nover, 2005) and sulphides in the 

crust (Bedrosian, 2016) or some form of metasomatic imprint at mantle depths, for example in the form of hydrogen impurities in the 

crystal lattice of mantle constituting minerals (Thiel and Heinson, 2013; Pommier, 2014; Selway, 2014). 

A common approach to interpretation of crustal seismic reflection profiles relies on subjective identification of faults, which in most 

cases are identified as discrete and narrow zones of deformation along which crustal movement is accommodated. These deformation 

zones are traced through the entire crustal columns often linking known surface faults through the entire crust down to the Moho 

discontinuity, the crust-mantle boundary. In some cases major faults link up with Moho offsets laterally displaced by tens of kilometers 

from their surface expression (Goleby et al., 1989). The fault zones accommodate deformation and displacement of lithological blocks. 

Moreover, they provide pathways for fluids and minor phases further weakening rheology and providing mechanisms for mineral 

deposit genesis.  

However, increasing examples of co-located magnetotelluric and seismic reflection profiles in Australia show that particularly in the 

mid to lower crust sub-vertical zones of low resistivity cross-cut interpreted faults derived from seismic data. In stable continental 

lithosphere, zones of low resistivity are typically attributed to minor conducting mineralogy as a result of past fluid precipitation and 

metasomatic reactions, such as graphite or sulphides, and/or active fluids (Selway, 2014; Thiel et al., 2016a). Seismic profiling has 

been extensively used in Australia (Goleby et al., 1989; Thybo and Artemieva, 2013; Kennett and Saygin, 2015; Kennett et al., 2016) 

as well as during the Lithoprobe program in Canada (Cook et al., 2010).  

Magnetotelluric measurements were collected along the same profiles as the seismic transects over the last ten years across Australia 

(Dennis et al., 2011, 2012; Heinson et al., 2006; Selway et al., 2009; Thiel et al., 2010, 2015; Dentith et al., 2012). Data analysis 

(Caldwell et al., 2004) and 2D modelling codes (Rodi and Mackie, 2001) have since improved and analyses and interpretations matured. 

 

Here, we analyse several examples of co-located seismic and magnetotelluric transects and focus specifically on the correlation between 

seismic reflectivity and magnetotelluric low resistivity. We illustrate three correlative subsets which describe either fluid-related 

reworking, magmatic overprints or associated seismic homogenization of lithological fabric due to underplating. 

 

RESULTS 

 

We note several types of correlation between reflection seismic and magnetotelluric data using the following examples surrounding 

the Gawler Craton, South Australia (Figure 1):  

 

 The Eucla-Gawler collocated seismic and magnetotelluric profile extends from Tarcoola in central South Australia to Haig 

in Western Australia. Reflection seismic and 5 km-spaced broadband magnetotelluric surveys were acquired along the trans-

continental railway, providing in part an east-west transect imaging the crustal architecture across the margins of, and in-

between, the Gawler and Yilgarn Cratons. Given competing geo-electric strike directions in magnetotelluric data between 

broad crustal sections of the c. 800 km long profile (Thiel et al., 2015), 2D modelling was conducted in two suitable sections, 

which we hereby refer to as Eucla-Gawler East (13GA-EG1E) and Eucla-Gawler West (13GA-EG1W). Reid and Dutch 

(2015), Spaggiari (2015) and Wise et al. (2015a) review the geology in the vicinity of these profiles, whilst Doublier et al. 

(2015), Dutch et al. (2015) and Dutch et al. (2016) discuss the seismic interpretation. 

 The Olympic Dam profile (03GA-OD1, Figure 1) is a north-south trending transect centred on the Olympic Dam iron oxide-

copper-gold±uranium deposit, with the aim of elucidating the crustal architecture constraining the mineralisation setting for 

this world class deposit (Lyons and Goleby, 2005). Drummond et al. (2006) reviews the crustal architecture and tectonic 

regime, whilst Wise et al (2015b) details a variation in seismic processing methodology trialled, revealing greater contrasts 

in the upper crust and permitting interpretation of possible fossil fluid pathways. 

Extensive MT acquisition has also been undertaken in recent years infilling an original site spacing of 5-10 km to 

approximately 1 km, (Heinson et al. (2006), G. Heinson pers comm.). 

 The 08GA-G01 (Eyre Peninsula) collocated seismic and magnetotelluric surveys across the northern Eyre Peninsula were 

designed to investigate the crustal architecture in the eastern and southern Gawler Craton (Fraser et al., 2010). The east-west 

oriented Eyre Peninsula profile crosses several north-south trending tectonic domain boundaries (Ferris et al., 2002) as well 

as the South Australian Heat Flow Anomaly (Neumann et al., 2000). 

 

A correlation is hereby referred to as the spatial coincidence between a region of anomalous conductivity and a sharp or diffuse change 

in seismic character. Regions of the upper crust in places show correlation between high conductivity and seismic packages of relatively 

uniform reflectivity. Here we interpret this correlation to be due to conductive phases distributed in lithostratigraphic packages. Causes 

of conductivity may be: groundwater in porous sediments (Adelaidean strata, north of Olympic Dam), sulphide-bearing shales 

(Tarcoola Formation, Eucla-Gawler East) or sheared and metamorphosed magnetite-bearing metasedimentary rocks (Moondrah 

Gneiss, Eucla-Gawler East), (Heinson et al., 2006; Thiel et al., 2015). 

Several examples of moderately-dipping conductors aligning with similarly-dipping, reflectors/ or edges of reflective regions are 

observed in both the Eucla-Gawler East and Eyre Peninsula profiles. Such conductive/reflective regions have variable depth extent, 

with most examples being confined to the upper crust. This type of correlation is interpreted to represent focusing of crustal fluids or 

conducting phases during deformation events, producing conductive and reflective shear zones. 

Broad regions in the lower-middle crust on the Eucla-Gawler East, Eucla-Gawler West and Olympic Dam profiles display good 

correlation between weakly reflective zones and conductive pathways, with similar features being observed in other co-located profiles 

globally (e.g. in the hanging-wall of the Central Metasedimentary Boundary Belt Zone of the Grenville Province, Canada (Adetunji. et 

al., 2014)). Such conductive zones continue across the Moho, and are assumed to be fed by a pervasive, fertile upper mantle (Thiel et 

al., 2016a; Heinson et al., 2006). Spatially coincident with such weakly reflective and conductive zones are interpreted Moho offsets, 

or regions of significant Moho topography. This may imply a causative relationship, ie a Moho offset providing a locus for up-ward 
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moving conductive phases. Significantly however, structures interpreted from seismics to cross-cut and offset the Moho in such regions 

are at odds with the conductivity structure. Conductors are generally steep, whilst structures from seismic are interpreted to be shallow-

moderately dipping, implying that at lower crustal depths in these regions, conductivity is not controlled by singular structures. 

We attempt to distinguish between conductive and seismic character associations caused by stratabound lithostratigraphic packages in 

sedimentary and metamorphic settings, the topic of previous discussion (e.g. Cook and Jones (1995); Jones (1998); Adetunji. et al. 

(2014)), and focus on correlations interpreted to be formed by crustal tectono-thermal events.  

 

Two major processes are therefore proposed for bulk modification of the post-formational reflectivity and conductivity structure of the 

crust: 

 

1. Crustal re-working 

The electrical resistivity model of the EW 

profile across the northern Eyre Peninsula 

(Figure 2) shows folded high conductivity 

zones which surface at locations of 

interpreted NS magnetic anomalies 

(McAvaney et al., 2016). The conductivity 

anomalies are not connected to the mantle but 

reside in the upper to middle crust and 

extending deeper along the western part of 

the profile. In the central part of the profile 

the conductivities are highest and are 

associated with a seismically reflective zone 

in the upper crust. A highly resistive crust 

underlies the folded conductors outcropping 

in the east, coinciding with known outcrops of 

the 3.1 GA Cooyerdoo granites. We interpret 

the resistor to be the Archean nucleus of the Gawler Craton supported by isotope data across the Eyre Peninsula (McAvaney 

et al., 2016). The upper-mid crustal conductor can be traced NS along the entire Eyre Peninsula through induction arrow 

studies and has been described as the Eyre Peninsula Conductivity Anomaly (White and Milligan, 1984). A closely-spaced 

Geomagnetic Depth Sounding profile across the southern tip of the Eyre Peninsula images a similar arcuate shaped structure 

as the one presented in Figure 2 (Thiel et al., 2005). Given the spatial relationship, we invoke a similar mechanism for the 

explanation of the upper crust conductivity anomalies to have formed during initial extension and formation of the shallow 

passive oceanic margin and accumulation of organic material in shallow marine sediments. Subsequent burial of the carbon-

rich material in a compressive setting led to thermal metamorphism and precipitation of graphite along grain boundaries. 

Continued shearing and buckling of the fault zones led to concentration of the precipitates along shear zones (e.g. Willman 

et al., 2010) which were then subsequently pushed to the surface in some parts as seen today. The high degree of faulting 

also explains the enhanced seismicity in the seismic reflection profiles.  

 

 

 

2. Magmatic/Hydrothermal overprints 

 

Despite conductive pathways in the Eucla-Gawler 

East and Olympic Dam profiles (Figure 3) being 

similar in nature, to a sub-vertical, conductive and 

non-reflective pathway in the Eucla-Gawler West 

profile (Figure 4), we attribute different geological 

processes to their formation. Commonalities in the 

lower crust between the two types are: mantle 

source, a Moho offset providing a locus for upward 

movement, apparent textural destruction in the 

lower crust (reduction in reflectivity) and a broad, 

diffuse signature. Key differences however, reside 

in the upper mantle and mid-upper crust, where 

different characteristics are observed in both the 

reflectivity and resistivity. 

 

i. Underplating and mass melt transfer 

The Eucla-Gawler West profile (Figure 3) 

displays a highly conductive upper 

mantle, the top of which correlates in part 

with the base of the seismic response (the 

interpreted Moho). At the top of the sub-

vertical mantle conductor sits a highly 

conductive and reflective lower crustal 

unit which may be an underplate, or the 

Figure 2: Eyre Peninsula (08GA-G1) east-west profile (see Figure 1 for 

location). Conductivity model overlain on seismic image (top) and 

cartoon interpretation of major crustal blocks based on seismic 

reflectivity and conductivity structure (bottom). Orange polygon 

shows how the conductivity structure is structurally controlled.  

Figure 3: Eucla-Gawler West east-west profile (see Figure 1 for 

location). Conductivity model overlain on seismic image (top) 

and cartoon interpretation of major crustal blocks based on 

seismic reflectivity (bottom). Orange polygon shows how the 

conductivity structure correlates well with broad changes in 

seismic reflectivity. 
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product of a metasomatic reactions between this lower crust and upwelling melts. To the west of the sub-vertical 

mantle conductor sits a sub-horizontal lower crustal/upper mantle conductor that shallows to the west. This 

correlates with a region of low reflectivity, with a moderately sharp, perhaps sheared in places, upper margin with 

a more reflective mid-crust. We interpret this region to be an underplate. Perhaps a rare example of direct 

geophysical detection of such a feature (Thybo and Artemieva, 2013). In the central Eucla-Gawler West profile, a 

gradient or offset in the Moho has provided a focus for upward movement of presumed felsic melts, feeding 

voluminous magmatism at c. 1180 Ma in the Coompana Province (Spaggiari, 2015; Wise et al., 2015a). Due to the 

broad and diffuse character of this pathway, indicated by low reflectivity and high conductivity, we invoke mass 

transfer of melts from the base of the crust to the surface, without significant crustal residence times. This is 

reflected in relatively juvenile isotopic signatures from magmatic rocks of this age in the Coompana Province 

(Spaggiari, 2015). 

 

ii. Introduction of magmatic volatiles/minor phase movement 

We interpret crustal 

conductivity anomalies 

in the Olympic Dam 

and Eucla-Gawler East 

profiles (Figure 4) to be 

due to minor 

conductive phases, 

possibly the product of 

de-volatalization of a 

metasomatized sub-

continental lithospheric 

mantle (SCLM). 

Steeply-dipping 

conductive and non-

reflective pathways 

extend from the upper 

mantle into the mid 

crust, possibly 

controlled by the 

location of a regions of 

Moho topography. Ponding, or accumulation, of conductive material occurs in the mid crust at what we interpret 

to represent the brittle-ductile transition (BDT) at the time of fluid movement. Accumulation of conductive material 

at this crustal level is also associated with a relative increase in conductivity, as predicted by elementary analysis 

(Connolly and Podladchikov, 2004). The conductivity and reflectivity structure above the BDT is quite different 

between the two examples. In the Olympic Dam profile, lateral movement of conductive phases beneath a highly 

reflective mid-upper crustal layer is inferred, before punching through and producing 3-4 narrow, sub-vertical 

conductive and non-reflective pathways to the sub-surface. Pre-existing, sub-vertical fault or shear structures in 

seismic imagery are not obviously controlling such pathways, although this may be a function of their steep nature 

not being resolved by seismics.  

In the Eucla-Gawler East example however, the conductivity and reflectivity structure above the BDT appears to 

be controlled by active deformation along west-dipping shear zones. Co-incident with inferred pathways of mag- 

matic volatiles are anomalies in potential field imagery. A distinctive linear magnetic anomaly is present at the 

surface expression of the Karari Shear Zone, likely indicating the (re-)precipitation of magnetite during shearing 

(Thiel et al., 2015). Density responses are more evident in the case of inferred magmatic volatile pathways in the 

Olympic Dam profile, in some cases caused by hematite breccias (Skirrow, 2008) associated with iron-oxide copper 

gold mineralisation. 

 

 

CONCLUSIONS 
 

1. Changes in reflectivity and resistivity can signify crustal modification processes, of which we have discussed several 

examples. An interpretation approach using both techniques (seismic and MT) allows for much greater inference on both the 

tectonic regime at the time of introduction/redistribution of conducting phases, as well as the nature of melt/fluid movement 

itself. 

2. Site spacing and processing methodologies - greater resolving power in mid-upper crust allows for true cross-cutting relations 

to be defined.  

3. Links to mineralisation. There is a spatial coincidence between zones of interpreted magmatic/hydrothermal fluid flow events 

(imaged by both MT and seismic, as well as having distinctive potential field signatures) and zones of mineralization in the 

Olympic Dam region. Is this a cause/effect relationship? Can this be used in a targeting sense? Using the case of the Olympic 

Dam profile, it could be argued that only with an increased MT station spacing and variations in seismic processing that 

upper crustal features are observed. 

 

 

 

Figure 4: Eucla-Gawler East profile (left) and Olympic Dam profile (right). 

Mantle sourced conductivity overprinting and destroying earlier fabrics shown. 

Reduction in reflectivity in lower crust associated with upward-moving 

conductive phases.  
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